The Damon Runyon Cancer Research Foundation named five new Damon Runyan Clinical Investigators at its spring 2019 Clinical Investigator Award Committee review. These recipients of the prestigious three-year award are outstanding early physician-scientists conducting patient-oriented cancer research at major research centers under the mentorship of the nation’s leading scientists and clinicians. Each clinical investigators will receive $600,000 to support the development of his/her project, selected for its potential to impact cancer diagnosis, prevention, and treatment. As part of the program, Damon Runyon repays medical school debt of up to $100,000 still owed by the awardee.

TrialSite News provides a link to the Damon Runyon Cancer Research Foundation press release as well as a list of the awardees. If not already in the TrialSite Investigator Network, these emerging stars now become part of our growing database of clinical investigators worldwide. Thereafter we look forward to great contributions they will make to the cause of human healthcare in combating cancer.

2019 Damon Runyon Clinical Investigators

Karuna Ganesh, MD, Ph.D.

Over 90% of cancer deaths are caused by metastasis, the spread of cancer cells to distant organs, where uncontrolled cancer cell growth lethally compromises organ function. Despite recent advances, current treatments fail to effectively control metastasis. Dr. Ganesh is growing colorectal cancer cells, removed from patients during surgery, as three-dimensional “organoids.” This cutting-edge technology models the complexity of human organs more accurately than cells growing in a dish. Using colorectal cancer organoids, her group is studying how cancer cells gain the ability to spread and grow outside their organ of origin. Her work is uncovering core signaling modules required for metastasis, with the goal of developing more effective treatments for patients with advanced cancers. Dr. Ganesh works under the mentorship of Joan Massague, Ph.D., at Memorial Sloan Kettering Cancer Center, New York.

Jennifer M. Kalish, MD, Ph.D.

Dr. Kalish is studying a rare hereditary syndrome called Beckwith-Wiedemann syndrome (BWS), which increases the risk of children developing kidney and liver cancers. These individuals have epigenetic changes on chromosome 11 that are found in other types of cancers. Epigenetic markers modify DNA so gene expression is turned on or off; changes in this process can cause cancer. By understanding how cancer is triggered in BWS, Dr. Kalish aims to identify pathways leading to cancer in a much larger population. These pathways can be targeted for the development of new treatments both for BWS patients and for patients with other cancers that have similar epigenetic changes. As a physician-scientist, Dr. Kalish established the BWS Registry, which compiles both clinical data and patient samples, and created the first human cell-based models of BWS. Dr. Kalish works under the mentorship of Marisa Bartolomei, Ph.D., at Children’s Hospital of Philadelphia, Philadelphia.

David G. McFadden, MD, Ph.D.

Mitochondria, the “power plants” of the cell, carry their own DNA that encodes proteins important to producing the energy necessary to run a normal cell. Most cancers also depend on mitochondria to promote the growth and division of tumor cells. Dr. McFadden has shown that a form of thyroid cancer called Hürthle cell carcinoma carries mutations in the mitochondrial DNA, which are maintained in primary tumors and metastases resected from the same patients. He will study energy metabolism in Hürthle cell cancers by feeding the tumors isotope forms of nutrients (tracers) that are used to produce energy and support cell growth. The tracers can be visualized to reveal how metabolism is re-wired in these tumors and to identify novel ways to target altered mitochondrial metabolism in cancers with such genetic mutations. Dr. McFadden works under the mentorship of Steven McKnight, Ph.D., and Ralph DeBerardinis, MD, Ph.D., at the University of Texas Southwestern, Dallas.

Matthew G. Oser, MD, Ph.D.

Although small cell lung cancer (SCLC) is initially highly responsive to chemotherapy, the disease recurs in nearly all patients in less than a year. There are currently no approved targeted therapies for when cancer returns. Dr. Oser aims to identify molecular targets that could be developed into new therapies for SCLC patients. Previous studies have demonstrated that SCLCs require sustained neuroendocrine differentiation for survival, suggesting that targeting this aspect could be a good therapeutic strategy. His research will utilize SCLC patient-derived xenograft models and a novel SCLC genetically engineered mouse model to identify new enzymes required for neuroendocrine differentiation and develop targeted therapies that can block this process. This work has the potential to develop new treatments for SCLC patients. Dr. Oser works under the mentorship of William G. Kaelin Jr., MD, at the Dana-Farber Cancer Institute, Boston.

Kavita Y. Sarin, MD, Ph.D.

Basal cell cancer (BCC) is the most common cancer in the United States, with 2 million cases annually resulting in $5 billion in societal cost. Although the majority of BCCs are small and surgically accessible, some individuals develop frequent recurrences of BCC and suffer from severe disability related to surgery and decreased quality of life. Dr. Sarin will focus on a group of 100 patients who develop extreme numbers of this skin cancer, in order to identify the genetic mechanisms that contribute to cancer susceptibility. While most BCCs are thought to develop from DNA damage caused by the sun’s ultraviolet rays, host genetics also play a critical role in BCC development. Understanding the mechanisms that contribute to cancer susceptibility will help identify at-risk individuals so they can be monitored for earlier diagnosis and prevention. In addition, she aims to develop new non-surgical therapies for these patients. Dr. Sarin works under the mentorship of Jean Y. Tang, MD, Ph.D., at Stanford University, Stanford.

In addition, the Committee recommended funding 5 Continuation Grants:

Vivek K. Arora, MD, Ph.D. 

“Defining a targetable oncogenic dyad in bladder cancer” with mentor Lee Ratner, MD, Ph.D., at Washington University in St. Louis

Christopher E. Barbieri, MD, Ph.D. 

“Subtype-specific modes of clinical and molecular progression in prostate cancer” with mentor Lewis C. Cantley, Ph.D., at Weill Cornell Medicine, New York

Jaehyuk Choi, MD, Ph.D. 

“Development of novel therapeutic strategies for aggressive CTCL subtypes” with mentors Stephen D. Miller, Ph.D., and Joan Guitart, MD, at Northwestern University, Chicago

Geoffrey R. Oxnard, MD 

“Clinical translation of plasma cell-free DNA (cfDNA) genotyping technologies for NSCLC care” with mentor Pasi A. Janne, MD, Ph.D., at Dana-Farber Cancer Institute, Boston

Heather L. Yeo, MD, MHS 

“Use of mobile applications to evaluate post-surgical recovery in aging patients with GI cancer” with mentors Manish A. Shah, MD, and Deborah Estrin, PhD, MS, at Weill Cornell Medicine, New York

Source: Damon Runyon Cancer Research Foundation

Pin It on Pinterest